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Multiple Comparisons

Generally speaking, multiple comparisons involves
statistical techniques for investigating the properties of
multiple hypothesis tests considered as a group. We will
consider two commonly encountered cases:

multiple hypothesis tests on a list of responses or on
a list of covariates;

a group of hypotheses on a levels of a factor usually
hypothesizing equality of the coefficients of several
levels or more generally that a linear function of the
coefficients is zero.
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Multiple Testing example

The Bottomly et al. mouse gene expression data
contains gene expression by RNA-Seq for brain tissue in
two strains of mice, 10 from the C57BL/6J strain and 11
from the DBA/2J strain. Fragments from the RNA were
mapped to mouse genes, resulting in counts for 11,870
genes. If we conduct tests for difference between the
counts or relative counts for the two strains for each of
the genes, we have potentially 11,870 tests, though this
could be reduced by eliminating genes whose total count
was so small that there was little information.
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If we conduct 11,870 tests at the 5% level, and all of the
null hypotheses are true, then the expected number of
false positives is 11870× 0.05 = 593.5, which will cause
considerable trouble in interpretation. A common
proposal for adjusting the p-values of tests uses the
Bonferroni inequality, in which when conducting k
hypothesis tests at level α, the chance of at least one
false positive is less than or equal to kα. If we conduct
the hypothesis tests each at level 0.05/k , then the
chance of any false positive is less than or equal to 0.05.
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What kind of effects could be detected with
α = 0.05/11870 = 4.2× 10−6? This would require
(under normality with 11 in each group) that the means
would be separated by 3.13 standard deviations, which
would eliminate any real possibility of detecting an
effect. Tests with p = 0.00001 would not be rejected!
This would be difficult for researcher to accept, and so a
different approach has come to be common in these
areas of investigation.
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If group 1 had mean 10 and standard deviation 1, and
group 2 had mean 13.13 with standard deviation 1, then
the denominator of the two sample t-test would be√
s21/11 + s22/11 ≈

√
2/11 = 0.426 and the expected

value of the difference of the means would be 3.13, so a
typical z-score when the difference would be detected
would be 7.34!

Requiring zero false positives in 11,870 test would be
widely considered unreasonable. So how many false
positives should we allow?
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False Discovery Rate

Instead of trying to control the false positive number, we
might instead choose to control the false discovery rate
(FDR), which is the fraction of tests in a group of tests
that are false positives. The most commonly used such
procedure is that of Benjamini and Hochberg (1995). To
use this, we can run all the hypothesis tests in the usual
way and construct the vector of p-values, then apply the
R function p.adjust.
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p.adjust(p, method = p.adjust.methods, n = length(p))

p.adjust.methods

# c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",

# "fdr", "none")

Arguments

p

numeric vector of p-values (possibly with NAs). Any other R object is coerced

by as.numeric.

method

correction method, a character string. Can be abbreviated.

n

number of comparisons, must be at least length(p);

only set this (to non-default) when you know what you are doing!
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Note that declaring significant any test with
FDR-adjusted p-value less than 0.05 is conceptually
completely different from using the 0.05 threshold on an
unadjusted p-value. It seems completely reasonable to
set a higher threshold such as 0.10.

Any time you conduct hypothesis tests, some of the
“significant” ones may not be truly different, and 5 or 10
percent seems a modest penalty to wade through. The
Bonferroni method tries to limit the false positives to
zero, which reduces the power to a large extent.
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Multiple Comparisons

The other kind of multiple comparison adjustment occurs
especially when we have a factor with multiple levels in a
linear predictor. Suppose we have three disease types,
“ALL”, “AML-High”, and “AML-Low” with estimates of
the log hazard ratio of AML-High vs. ALL and of the log
hazard ratio of AML-Low vs. ALL. The coefficient table
has hypothesis tests for whether these each are zero, but
not of the comparison of AML-High and AML-Low.
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If we have a factor describing the type of burn as
chemical, scald, electric, and flame, there are six distinct
pairwise comparisons, and well as possibly other linear
hypotheses, and if we conduct lots of tests on the three
coefficients in the table, we may have false positives. Of
course a test of whether all the rates are equal is
obtainable by a LR test of the models with and without
that factor. Note that Wald tests of any linear
hypothesis can be conducted for any type of regression
model for which asymptotically valid covariance matrices
can be derived.
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A linear hypothesis on a vector of coefficients β of length
p with estimates β̂ is of the form

H0 : L
⊤β = k ,

where L is a vector of numbers of length p; often L is a
contrast meaning that the sum of the entries is zero and
k is also often zero. If β̂ has estimated covariance matrix
V̂ , then the estimated variance of L⊤β̂ is L⊤V̂ L and an
approximate z-statistic for the hypothesis as stated is

z =
L⊤β̂ − k√

L⊤V̂ L
.
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Comparison with a Control
recovery {multcomp}

Recovery time after surgery.

This data frame contains the following variables

blanket

blanket type, a factor at four levels: b0, b1, b2, and b3.

minutes

response variable: recovery time after a surgical procedure.

Details

A company developed specialized heating blankets designed to help the body heat

following a surgical procedure. Four types of blankets were tried on surgical

patients with the aim of comparing the recovery time of patients.

One of the blanket was a standard blanket that had been in use already

in various hospitals.

Source

P. H. Westfall, R. D. Tobias, D. Rom, R. D. Wolfinger, Y. Hochberg (1999).

Multiple Comparisons and Multiple Tests Using the SAS System. Cary,

NC: SAS Institute Inc., page 66.
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> library(multcomp)

> data(recovery)

> recovery.lm <- lm(minutes~blanket,data=recovery)

> summary(recovery.lm)

Call:

lm(formula = minutes ~ blanket, data = recovery)

Residuals:

Min 1Q Median 3Q Max

-6.133 -1.800 0.200 2.200 4.867

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 ***

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.59 on 37 degrees of freedom

Multiple R-squared: 0.3797, Adjusted R-squared: 0.3294

F-statistic: 7.55 on 3 and 37 DF, p-value: 0.0004619
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It looks like blanket b2 is better than b0, but we did
conduct three hypothesis tests to obtain that finding.
The F-test shows that not all the blankets are the same,
so it might be reasonable to attribute that only to b2,
but we can test that allowing for the multiple
comparisons and the correlations between the tests using
the Dunnett procedure and also obtain confidence
intervals adjusted for multiple comparisons. This is based
on the multivariate t distribution of the coefficients and
is implemented in the glht() command in the R
package multcomp.
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> recovery.mc <- glht(recovery.lm,linfct=mcp(blanket="Dunnett"))

> summary(recovery.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)
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> names(recovery.mc)

[1] "model" "linfct" "rhs" "coef" "vcov" "df"

[7] "alternative" "type" "focus"

> recovery.mc$linfct

(Intercept) blanketb1 blanketb2 blanketb3

b1 - b0 0 1 0 0

b2 - b0 0 0 1 0

b3 - b0 0 0 0 1

attr(,"type")

[1] "Dunnett"

> recovery.mc$rhs

[1] 0 0 0

> recovery.mc$focus

[1] "blanket"

Some attributes of an object have extractor functions, including

coef and vcov. All the components can be accessed as attributes

of the object. The three linear hypotheses require the linear vectors

L and the right-hand sides k .
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contrMat(n, type = c("Dunnett", "Tukey", "Sequen", "AVE",

"Changepoint", "Williams", "Marcus",

"McDermott", "UmbrellaWilliams", "GrandMean"),

base = 1)

Arguments

n a (possibly named) vector of sample sizes for each group.

type type of contrast.

base an integer specifying which group is considered the baseline

group for Dunnett contrasts.

This lists the types of pre-specified contrasts. Any set of linear

hypotheses can also be specified just as a matrix linfct and

right-hand side vector rhs. A base level can be given for Dunnett

comparisons, which for general hypotheses is the focus attribute.
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recovery.lm

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 ***

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

recovery.mc

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

Note that the t-scores are the same, but the p-values are adjusted

for multiple comparisons so that the chance that one or more is

significant at level α in the null case is less than or equal to α
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> summary(recovery.mc,test = adjusted(type="bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.574796

b2 - b0 == 0 -7.4667 1.6038 -4.656 0.000122 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.202439

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- bonferroni method)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 *** lm

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456 Dunnett

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.574796 Bonferroni

b2 - b0 == 0 -7.4667 1.6038 -4.656 0.000122 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.202439

Both Dunnett and Bonferroni protect the familywise error rate, but

Dunnett has smaller p-values because it uses the correlations of the

tests.
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> confint(recovery.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Quantile = 2.489

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

b1 - b0 == 0 -2.1333 -6.1251 1.8584

b2 - b0 == 0 -7.4667 -11.4584 -3.4749

b3 - b0 == 0 -1.6667 -3.8688 0.5355

There is at least a 95% chance that all the true values of the

contrasts lie in their stated intervals.
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> confint(recovery.lm)

2.5 % 97.5 %

(Intercept) 13.626389 15.9736107

blanketb1 -5.382914 1.1162474

blanketb2 -10.716247 -4.2170859

blanketb3 -3.459387 0.1260532

Linear Hypotheses:

Estimate lwr upr

b1 - b0 == 0 -2.1333 -6.1251 1.8584

b2 - b0 == 0 -7.4667 -11.4584 -3.4749

b3 - b0 == 0 -1.6667 -3.8688 0.5355

The confidence intervals from lm are individually valid, but if we

consider them to be independent the chance that at least one does

not contain the true value is 1− (0.95)3 = 0.14. We could use

Bonferroni confidence intervals at 98.3% confidence, but the

Dunnett ones will be narrower because they use the correlations of

the variables.
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All Pairs Comparisons

immer {MASS}

Yields from a Barley Field Trial

Description

The immer data frame has 30 rows and 4 columns. Five varieties of barley were

grown in six locations in each of 1931 and 1932.

This data frame contains the following columns:

Loc

The location.

Var

The variety of barley ("manchuria", "svansota", "velvet", "trebi" and "peatland").

Y1

Yield in 1931.

Y2

Yield in 1932.
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> library(MASS)

> data(immer)

> immer1 <- data.frame(immer,Yield = (immer$Y1+immer$Y2))

> summary(immer.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 204.403 12.156 16.815 2.88e-13 ***

VarP 16.300 12.156 1.341 0.194983

VarS -6.517 12.156 -0.536 0.597810

VarT 47.617 12.156 3.917 0.000854 ***

VarV 9.583 12.156 0.788 0.439728

LocD -52.120 13.316 -3.914 0.000860 ***

LocGR -56.680 13.316 -4.256 0.000386 ***

LocM -7.180 13.316 -0.539 0.595705

LocUF -32.020 13.316 -2.405 0.025996 *

LocW 54.280 13.316 4.076 0.000589 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.05 on 20 degrees of freedom

Multiple R-squared: 0.8568, Adjusted R-squared: 0.7924

F-statistic: 13.3 on 9 and 20 DF, p-value: 1.216e-06
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> drop1(immer.lm,test="F")

Single term deletions

Model:

Yield ~ Var + Loc

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 8866 190.66

Var 4 10620 19486 206.29 5.9891 0.002453 **

Loc 5 42442 51308 233.33 19.1480 5.212e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> tapply(immer1$Yield,immer1$Var,mean)

M P S T V

188.7833 205.0833 182.2667 236.4000 198.3667

> sort(tapply(immer1$Yield,immer1$Var,mean))

S M V P T

182.2667 188.7833 198.3667 205.0833 236.4000

Both variety and location are significant, but it is not clear which

pairs of varieties are shown to differ.
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S M V P T

182.2667 188.7833 198.3667 205.0833 236.4000

> immer.mc <- glht(immer.lm,linfct=mcp(Var = "Tukey"))

> summary(immer.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Yield ~ Var + Loc, data = immer1)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

P - M == 0 16.300 12.156 1.341 0.67008

S - M == 0 -6.517 12.156 -0.536 0.98242

T - M == 0 47.617 12.156 3.917 0.00675 **

V - M == 0 9.583 12.156 0.788 0.93102

S - P == 0 -22.817 12.156 -1.877 0.36064

T - P == 0 31.317 12.156 2.576 0.11336

V - P == 0 -6.717 12.156 -0.553 0.98035

T - S == 0 54.133 12.156 4.453 0.00201 **

V - S == 0 16.100 12.156 1.324 0.67981

V - T == 0 -38.033 12.156 -3.129 0.03773 *
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> confint(immer.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Yield ~ Var + Loc, data = immer1)

Quantile = 2.9932

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

P - M == 0 16.3000 -20.0850 52.6850

S - M == 0 -6.5167 -42.9016 29.8683

T - M == 0 47.6167 11.2317 84.0016

V - M == 0 9.5833 -26.8016 45.9683

S - P == 0 -22.8167 -59.2016 13.5683

T - P == 0 31.3167 -5.0683 67.7016

V - P == 0 -6.7167 -43.1016 29.6683

T - S == 0 54.1333 17.7484 90.5183

V - S == 0 16.1000 -20.2850 52.4850

V - T == 0 -38.0333 -74.4183 -1.6484
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The confidence intervals and tests that result from
uncorrected lm and other regression models are often
called Least Significant Difference = LSD tests and
intervals. When there are many levels of a factor, this
can result in false positives. One possible intermediate
choice is to use the LSD tests and intervals, but only if
the anova test for the factor is significant. This method
is sometimes called the Protected LSD. This protects
against the case where all the levels have equal effect,
but not against partial equalities. However, for some
applications this may be enough.
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Another Example

> summary(burn1$BurnType)

Chemical Scald Electric Flame

9 18 11 116

> summary(coxph(burn1.surv~Treatment+BurnType,data=burn1))

coef exp(coef) se(coef) z Pr(>|z|)

TreatmentCleansing -0.5958 0.5511 0.2968 -2.008 0.0447 *

BurnTypeScald 1.1328 3.1044 1.0828 1.046 0.2955

BurnTypeElectric 2.2660 9.6407 1.0837 2.091 0.0365 *

BurnTypeFlame 0.9888 2.6879 1.0160 0.973 0.3305

> drop1(coxph(burn1.surv~Treatment+BurnType,data=burn1),test="Chisq")

Df AIC LRT Pr(>Chi)

<none> 435.03

Treatment 1 437.14 4.1021 0.04283 *

BurnType 3 436.84 7.8095 0.05012 .
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> summary(burn1$BurnType)

Chemical Scald Electric Flame

9 18 11 116

> burntype.mc <- glht(coxph(burn1.surv~Treatment+BurnType,data=burn1),

linfct=mcp(BurnType="Tukey"))

> summary(burntype.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: coxph(formula = burn1.surv ~ Treatment + BurnType, data = burn1)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

Scald - Chemical == 0 1.1328 1.0828 1.046 0.7013

Electric - Chemical == 0 2.2660 1.0837 2.091 0.1406

Flame - Chemical == 0 0.9888 1.0160 0.973 0.7460

Electric - Scald == 0 1.1332 0.5902 1.920 0.1999

Flame - Scald == 0 -0.1441 0.4456 -0.323 0.9870

Flame - Electric == 0 -1.2772 0.4521 -2.825 0.0212 *
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> confint(burntype.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: coxph(formula = burn1.surv ~ Treatment + BurnType, data = burn1)

Quantile = 2.5176

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Scald - Chemical == 0 1.1328 -1.5931 3.8587

Electric - Chemical == 0 2.2660 -0.4622 4.9942

Flame - Chemical == 0 0.9888 -1.5691 3.5466

Electric - Scald == 0 1.1332 -0.3527 2.6190

Flame - Scald == 0 -0.1441 -1.2658 0.9777

Flame - Electric == 0 -1.2772 -2.4153 -0.1391
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Scheffé Tests and Intervals

In the last example, allowing for the fact that six tests
were conducted, one of them was still significant and yet
the anova test for the type factor was not (quite). One
reason might be that the LR test and the Wald test are
only asymptotically equivalent. But another is that the
hypothesis that a factor has no effect means that any
linear combination of levels has no associated effect
because the effect associated with any factor level is
zero. Tests and intervals can be based on this idea, that
we need to be protected from false positives in any
(linear) test suggested by the results of an analysis.
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Suppose we have a factor with r levels and an effect µi

associated with each level. This could be coefficients in a
regression in which the coefficient for level i is already a
comparison between level i and level 1. The assertion
that the factor has no effect in either case is the
hypothesis that µ1 = µ2 = · · · = µr . In the coefficient
case, µ1 = 0 so then all the values of µi = 0, but in any
case, if we have a contrast L, then L⊤M = 0, where M is
the vector (µ1, µ2, . . . , µr). We have the (infinite)
collection of contrasts and we want a test/interval such
that when the total null hypothesis on the factor is true,
then the chance that any test will be significant is less
than or equal to α.
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The method uses the estimated value of the contrast and
the standard error, but instead using the t-statistic, one
uses instead Ĉ ± sĈ

√
(r − 1)Fα;r−1;df , where df is the

residual degrees of freedom. So with six types of barley
in an experiment with 30 data points, the multipier is√

5F.05,5,20 = 3.68 instead of t20 = 2.086. Generally, this
level of protection is achieved at too high a cost. If
differences are the inferential target, the Tukey HSD is
better (with multiplier 2.518).
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